Research paper topics, free example research papers

You are welcome to search thousands of free research papers and essays. Search for your research paper topic now!

Research paper example essay prompt: The Atomic Bomb - 1181 words

NOTE: The samle research paper or essay prompt you see on this page is a free essay, available to anyone. You can use any paper as a sample on how to write research paper, essay prompts or as a source of information. We strongly discourage you to directly copy/paste any essay and turn it in for credit. If your school uses any plagiarism detecting software, you might be caught and accused of plagiarism. If you need a custom essay or research paper, written from scratch exclusively for you, please use our paid research paper writing service!

The Atomic Bomb By Douglas Thornton BOOM! The first detonation of an atomic bomb was on July 16,1945 on Hiroshima, Japan . That was one of the reasons why I picked this topic. Another reason was that there is lots of information on the atomic bomb out there and the last reason is I wanted to know why the atomic bomb has great explosive power. The main part of an atomic bomb is of course an atom. So that is what Im going to say first.

The Atom Atoms are everything. It is your paper, your house, your clothes, and everything else. Atoms is the smallest thing on earth. You can fit a million atoms in about the width of a piece of paper. You cant see them with the naked eye or with the best microscope in the world.

The sciencists use theories and tests to know that they are there. Atoms are made up of three things; electrons, proton(s),and neutrons. If you combined proton(s) and neutrons you get the nucleus of the atom. Then the nucleus is surrounded by a shell. That shell is made by an electron(s) spinning around the nucleus so fast it makes that shell. Each shell can only hold a certain amount of electrons, this graph will show you that.

* The proton is positivtly charged while neutrons have no charge. The proton attracts the electron. This pull causes the whirling of electrons which creates the shell.Most of an atom is empty space( the empty space is between the nucleus and the electrons). Neutrons are just slightly larger than protons. An electron is small.

Its about 1/1836 of a proton or a neutron.In every atom there is always the same number of protons and electrons. The Atomic Bomb Now, what is an atom bomb? The Atomic Bomb is a weapon of mass destruction. It does that by a quick release of splitting or fission of a nucleus of a heavy element like uranium and plutonium. They send a neutron to strike a nucleus of the isotopes( means the name given to an atom that has acquired or lost one or more neutrons from its nucleus.The atoms structure is relatively the same, but the added or subtracted weight may cause the atom to have new properties such as being fissionable) uranium-235 or plutonuim-239. Then the nucleus splits into two halves. Each half of the nucleus has about the same amount of neutrons and protons.

When the nucleus splits a great deal of thermal energy and gamma rays and two or more neutron are given off. Under some conditions those neutrons that were released come back and strike again. Then you two split halves of a nucleus. Then they give off the same thing and the neutrons come back and strike again, and again. This chain reaction results in which almost all the fissionable material is blown up. This cause the great explosion.

All isotopes of uranium are fissionable, but uranium-235 is better than uranium-238 because it goes under fission quicker and gives off more neutrons per fission than Uranuim-238 or any other isotopes of uranium. plutonium-239 has the same characteristics of uranium-239. Both uranium-235 and plutonium-239 are used in the atomic bomb. If you use a small amount say .45 kg(1 lb) of uranium-235 or plutonium-239 it cant under go the chain reaction that is needed and is called subcritical. It cant undergo the chain reaction because the average of the neutrons released by the fission are likely not to hit another nucleus. Then if more of uranium-239 or plutonium-239 is added there is a higher percentage of neutrons hitting the nucleus. At the point when critical mass has been acomblished, and a chain reaction the explosion will be created.

All subcritical fissionable material must be brought up to critical state extremely quick. One way to do that is to take two subcitical masses together at one point. When you combined those two subcritical masses you will achieve critical mass. How you do it is you use two high explosives to shoot the subcrital masses of fissionable material together in a hollow tube. The second way is to use an implosion, which instead of blow up outward it blows up inward, by which the core of fissionable material is very quickly compressed into a smaller size. This makes the fissionable material more dense; which means the nuclei are packed in tighter and have a better chance of the neutrons hitting the nuclei.

The outer layer of the implosion-type Atomic Bomb is a sphere or a bunch of concentric shells of fission able material is covered by explosives, are simultaneously detonated, implode the fissionable material under great persure into a denser mass which automacticly achieves critical mass.The use of a tamper;which is a coat of beryllium oxide or some thing else around the fissionable material; reflects some of the neutrons trying to escape and put back to strike more. More help is used by a "boosted fission" devices which incorporate such fissionable material as deuterium or tritium in the core. This boosts the fission by adding a great abundance of neutrons. When the bomb is done, 1 kg(2.2 lb) of uranium -235 releases the energy equal to 17,000 tons or 17 kilotons of TNT. When the bomb goes off it releases an ambundant amounts of thermal energy, or heat.Temperature becomes several million degrees in the bomb. This thermal energy, a large fire ball, which can ignites the ground and burns up a whole city. Convection currents are created by the explosion, which sucks in dust and other things into a fireball, creating the well-known mushroom shaped cloud.

Also shock waves goes out away from the bomb and can go to several miles away and it can destroy buildings. Also large amounts of neutrons and gamma rays are also emitted; this lethal radiation goes out rapidly over 1.5-3 km(1-2 miles). Materials vaporized in the fireball condences into fine particles; this radioactive debris or fallout is carried by the wind in the troposphere or stratosphere. These radioactive contaminates stay for weeks after the explosion and have a lethal effect. The elements are strontium-90 and plutonium-239.

The Manhattan Project The manhattan project was a code name for the US effort in World War two to create an atomic bomb. It was named after the Manhattan Engineer District of the US Army Corps of Engineers, based in New York City where most of the research was done, but it mainly took place in New Mexico. The history of the Manhattan project remained classified for many years. The project lasted four years, between 1942-1946, and cost about 1.8 billion dollars( today it cost about 20 billion dollars). The project produced three bombs: the first one was known as "Gadget", was used as a test model; the second was named "Little Boy", dropped over Hiroshima, and the third was "Fat Man" detonated over Nagasaki.

When World War two started in1940 Germany and Italy were taking over countries in Europe. When Japan saw that they decided to take over countries in the far ...

Related: atomic, atomic bomb, bomb, thermal energy, york city

Research paper topics, free essay prompts, sample research papers on The Atomic Bomb